Dissolved oxygen in aqueous solution Transmitter manual Fluorimetry JXBS-3001-DO Ver2.0

威海精讯畅通电子科技有限公司 Weihai JXCT Electronics Co., Ltd.

Charpter I Product Introduction

1.1 Brief Introduction

The dissolved Oxygen on-line analyzer is one of the intelligent on-line chemical analysis instruments, is widely used in thermal power, chemical fertilizers, metallurgy, environmental protection, pharmaceutical, biochemical, food and tap water and other solutions dissolved oxygen, saturation, oxygen partial pressure and temperature monitoring. This product uses the fluorescence method to dissolve the oxygen probe, the sensor product life is long, does not need the maintenance, the performance is good, the continuous monitoring data realizes the remote transmission monitoring and the record through the transformation output connection recorder, also can connect RS485 interface through the MODBUS-RTU protocol can be easily connected to the computer to achieve monitoring and recording. At the same time the equipment has 2-way relay interface, can set the alarm point output.

1.2 Function character

The probe of this product is a fluorescence probe, which uses the principle of fluorescence quenching to measure. The fluorescence method has been very active in recent years. It can overcome the shortcoming that the traditional methods can not

measure continuously on-line, free from magnetic field interference, no consumption electrode, high sensitivity, low detection limit, long life, in the sustainable on-line monitoring and other advantages have been widely used. With a wide measuring range, good linear, waterproof performance, easy to use, easy to install, board card Modular design, assembly configuration, using 2.4 inches 128 * 64 lattice screen, isolation transmission output, less interference, isolation of RS485 communication, measurement of dissolved oxygen, temperature measurement, upper and lower limit control, variable output, RS485 communication, configurable temperature manual, automatic compensation function, setting of high and low alarm function, and hysteresis, can be set Buzzer, LCD backlight switch function, increase the function of Universal Password.

1.3 Main parameter

Parameter name	Parameter option	
DC electric	12-24V DC	
supply		
Electric	$\leqslant 0.15 \text{W}$ (@12V DC ,	25℃)
consumption		
Measurement	3%F.s	
precision		
Measurement	0-20mg/L	
range		
IONIC	0.01mg/L	
resolution		
Output signal	RS485(Mondbus	protocol)/4-20mA
		2

	(choice)			
Repeatability	$\pm 2\%$			
Probe size	155mm*12mm (length*diameter)			
Temperature	-20°C-80°C (manual/automatic)			
supply				
Response speed	$\leq 15s$			
Relay alarm	Two-way normally open normally			
	closed alarm relay			

• Note:The default length of the probe cable is 5 meters.

1.4 Product usage topology

A typical aqueous solution control system is shown below, including an integrated system with the control box as the core, in which the control box is connected to a dissolved oxygen probe and the output acquisition processing is displayed, at the same time, the device can output RS-485 signal or analog signal to the computer, PLC, SCM, etc. . At the same time, the backend of the relay can do a variety of relay control and alarm, can control the pump or valve and other equipment.

Charpter II Hardware connection

2.1 Pre-install equipment check

Pre-install equipment check list:

Name	Quantity
LCD	1 piece
Instrument	
Control Box	
Conductivity	1 piece
probe	
12V waterproof	1 piece
power supply	(choice)
USB to 485	1 piece
equipment	(choice)
Warranty	1 piece
card/certificate	-
of compliance	

2.2 Interface function (Main function)

On the back of the instrument, there are 14 terminals. Next to each terminal is printed the number of terminals. The terminals have different functions, as shown in the following table

Terminal Main function:

Term inal	Main function	Ter mina l	Main function
8	Power supply input plus	1	Relay1-COM
9	Power supply input minus	2	Relay1-OC
10	Electrodeinput1	3	Relay2-COM
11	Electrode public terminal	4	Relay2-OC
12	Temperature supply input plus	5	-
13	Analog parameter output plus	6	485-A
14	Temperature supply input minus	7	485-B

When in use, the probe wire will have a label on it, please follow the label, connect the warming wire to 12 and 14 Terminal (no polarity), and connect the Electrodeplus to

Terminal 6, Electrode minus to Terminal 7, the Electrode connection has polarity, so please don't connect the reverse, if there is a shielded line, just connect the shield cable to the 14Terminal. Please take care not to connect in the wrong order, the wrong wiring will cause the equipment to burn out. Please do not bring live products near the signal Terminal, which may cause trouble .

2.3 Interface function (Second function)

Because the control box has a wide range of uses and functions, there is a second function definition in some interfaces. Please note that the second function is optional in certain situations.

Term inal	Second function	Ter mina	Main function	
		1		
8	none	1	none	
9	none	2	none	
10	none	3	none	
11	none	4	none	
12	none	5	Electrodeinput2	
13	Analog output	6	none	
14	none	7	Electrode	public
			terminal	

Terminal second function:

2.4 Control box installation

The installation mode of the control box sensor is the embedded installation mode. The dimensions of the product are shown in the figure below $_{\circ}$

Transmitter front size

Transmitter side size

A rectangular incision is made on the instrument cabinet or installation panel during installation, as shown in the figure below. The installation can be completed by inserting the instrument into the instrument cabinet and fixing it with the mounting bracket of the instrument on the back.

This instrument is disk mounted. Please install it indoors, away from wind, rain and direct sunlight. To prevent Temperature from rising inside the meter, install in a wellventilated place. When installing this instrument, please do not tilt left or right, as far as possible horizontal installation.

This instrument is equipped with Relay switch output. It is usually used as alarm prompt. If the user uses this function to participate in the loop control, if the instrument failure may lead to a major accident or damage to other equipment, it is necessary to set up an emergency stop circuit and protection circuit complementary, otherwise the consequences, the company will not minus.

2.5 Electrode Installation

Electrodes are very sophisticated components that must be installed in the exact way plus is installed, and incorrect installation can result in Electrode damage or irreversible damage. The Electrode is installed using a pipe. Immersion. FLANGE CAN BE INSTALLED.

installation to avoid water entering Electrode and short circuit of Electrode cable.

Make sure your Electrode is immersed in the test solution or wearing a protective cap with built-in protection during a long-term cold shutdown in winter. Add an antifreeze or bring back water for storage. Otherwise, it will shorten the service life.

Charpter III Function and use of instrument

3.1 Product menu and press button

The first line show the temperature and analog electric this moment,

ESC	Cancel	You can return to the upper layer
		between the related upper and lower
		layers under the menu interface
Ť	Up	Scroll data display under "monitor
		interface"

		Under menu interface, select the
		relevant menu
		Set status to modify the associated
		value
¥	Down	Scroll data display under "monitor
		interface"
		Under menu interface, select the
		relevant menu
		Set Status to modify the associated
		value
NET	Confirm	Lock data display under "monitor
		interface"
		"Menu interface" to enter the sub-
		menu or confirm the modification

3.2 Setting status

In the normal display interface, use the [menu] key to enter the "input password" interface, the default password is four 0. Enter your password correctly, then press the "confirm" button to enter the "menu" interface. "system settings" : including, Buzzer and backlight settings, password changes and factory settings. "Signal Settings" include signal one and signal two; signals include the Electrode type and Temperature compensation. "Remote Setting" includes RS485 and current transmission; "alarm setting" includes dissolved oxygen level alarm;

"Information Query" includes hardware and software versions.

3.2.1 System setting

"BUZZER setting" : set the alarm buzzer switch. "backlight settings" : You can set the background brightness and brightness screen time. "Password Modification" : You can turn your password on or off and change it. Whether factory settings reverts to their factory presetting.

3.2.2 Signal setting

Electrode type:set electrode type, dissolved oxygen electrode and electric conductivity Electrode.

Temperature supply:Set automatic or manual temperature range-20-80 $^\circ\!\!\mathrm{C}$

3.2.3 Remote setting

"Remote Settings" : contains 485 and analog communication mode. RS485: Sets the address and Baud rate of the 485 communication. Current transmission: Set 4-20mA output to 4mA and 20mA.

3.2.4 Alarm setting

Dissolved oxygen overstatement: When the measured value is greater than the overstatement

absorbed value, the overstatement Relay absorbed value, when the measured value is less than the overstatement disconnected value, the overstatement Relay disconnected. UNDERREPORTING OF DISSOLVED OXYGEN: When the measured value is less than the under reporting of absorbed value, under reporting Relay absorbed value, when the measured value is greater than the under reporting of disconnected value, under reporting Relay disconnected.

3.2.5 Information view

Version Information: Query the current version of hardware and software, strong trace ability.

communication protocol

精讯畅通

1.5 Communication primary parameter

Parameter	Option				
Cod	8 bit binary system				
Data bit	8bit				
Parity bit	none				
Stop bit	1bit				
Error	CRC redundant cycle code				
checking					
Baud rate	2400bps/4800bps/9600 bps, default out-				
	factory 9600bps				
Code	8 bit binary system				

4.1 Data frame format definition

Use Modbus-RTU communication rule , format following:

Start structure>=4byte Address code= 1byte Function code= 1byte Data area= N byte Error check= 16bit CRC code Final structure>=4byte

Address code: The address for the transmitter is unique in the inquiry network (factory default $0x01)_{\circ}$

Function code : The instructions given by the host Function prompt that this transmitter only uses Function code 0x03(read memory data).

Data area: Data area is specific query area, note: 16 bits data is higher that byte

CRC code: 2 byte checking code.

Query frame

Addres s code	Functio n code	Register start position	Register length	Check co low bit	deCheck code high bit
1byte	1byte	2byte	2byte	1byte	1byte
R	eply fra	ame			
Addres s code	Functio n code	Efficient byte	First d area	lataSecond area	dataNth data area
1byte	1 byte	1byte	2byte	2byte	2byte

4.2 Register address

Register	PLC	Option	Manufa
address	configu		cture
	ration		
	address		
0001H	40002	Temperature(Single	Read
		bit0.1℃)	only
0002H	40003	Dissolved oxygen (Single	Read
		bit0.01mg/L)	only
0100H	40101	Equipment position(0-252)	Read
			and
			write
0101H	40102	Baud rate(2400/4800/9600)	Read
			and

write

4.3 Example and explanation of equipment protocol4.3.1 Catch equipment position 0x01 dissolved oxygen

Query nume							
Addre ss code	Funct ion code	Start position		Data length	Check code low bit	Check code high bit	
0x01	0x03	0x	00,0x02	0x00,0x01	0x25	0xCA	1
Rep	eply frame(Example: catch dissolved		oxygen	is			
l.89mg/L	L)						
Addre ss code	-) Functio n code		Efficien t byte	Dissolve d oxygen	Check c o d e 1 o w b i	Check code high bit	
0x01	0x03		0x02	0x00 0xBD	t 0x78	0x35	
	Addre ss code 0x01 Rep .89mg/I .89mg/I .89mg/I ox01	Addre ssFunct ion code0x010x030x010x03Replyfra89mg/L)Addre ss codeFuncti n code0x010x03	Addre ss codeFunct ion codeSt po0x010x030x0x010x030xReplyframe89mg/L)Addre ss codeFunctio n code0x010x03	Addre ss codeFunct ion codeStart position $0x01$ $0x03$ $0x00,0x02$ Replyframe(Example 1.89 mg/L) $\mathbf{Efficien}$ n codeAddre ss codeFunctio n codeEfficien t byte $0x01$ $0x03$ $0x02$	Addre ss codeFunct ion codeStart positionData length $0x01$ $0x03$ $0x00,0x02$ $0x00,0x01$ Replyframe(Example: catch of 1.89mg/L)catch of catch of LimitsAddre ss codeFunctio n codeEfficien t byteDissolve d oxygenAddre ss codeFunctio n codeEfficien t byteDissolve d oxygen	Addre ss codeFunct ion codeStart positionData lengthCheck code low bit $0x01$ $0x03$ $0x00,0x02$ $0x00,0x01$ $0x25$ Reply frame(Example:catch dissolved $0x02$ $0x00,0x01$ $0x25$ Reply frame(Example:catch catch $dissolved$ $dissolved$.89mg/L)Efficien tDissolve d o $dissolved$ Addre ss codeFunctio n codeEfficien tDissolve d oxygen $dissolved$ Addre solvedFunctio n codeEfficien tDissolve d oxygen $dissolved$ Addre solvedFunctio tEfficien tDissolve d oxygen $dissolved$ Addre solvedFunctio tEfficien tDissolve d oxygen $dissolved$ Addre solvedFunctio tEfficien tDissolve d oxygen $dissolved$ Addre solvedFunctio tEfficien tDissolve d oxygen $dissolve$ Addre solvedFunctio tEfficien tDissolve d oxygen $dissolve$ Addre solvedFunctio tFunctio tFunctio tFunctio tAddre solvedFunctio tFunctio tFunctio tFunctio tAddre solvedFunctio tFunctio tFunctio tFunctio tAddre solvedFunctio tFunctio tFunctio tFunctio tAddre solve	Addre ss codeFunct ion codeStart positionData lengthCheck codeCheck code high bit $0x01$ $0x03$ $0x00,0x02$ $0x00,0x01$ $0x25$ $0xCA$ Replyframe(Example: catchcatchdissolvedoxygen.89mg/L)Addre ss codeFunctio n codeEfficien t byteDissolve d oxygenCheck codeCheck codeAddre ss codeFunctio n codeEfficien t byteDissolve d oxygenCheck codeCheck codeAddre ss codeFunctio n codeEfficien t byteDissolve d oxygen1 o wCheck codeAddre ss codeFunctio n codeEfficien t byteDissolve d oxygen1 o wCheck codeAddre ss codeFunctio n codeEfficien t byteDissolve d oxygen1 o wCheck code0x010x030x020x00 0x8D0x780x35

Query frame

Dissolved oxygen:

00BD H(hexadecimal)=189=>Dissolved oxygen=1.89mg/L

4.3.2 Catch equipment position 0x01 Temperature data Query frame

Addre ss code	Funct ion code	Start address	Data area	Check code low bit	Check code high bit
0x01	0x03	0x00,0x01	0x00,0x01	0xd5	0xca

Reply frame

Addre ss code	Functio n code	Efficient byte	Temperat ure	Check code low bit	Check code high bit
0x01	0x03	0x02	0x00 0xAF	0xDB	0xBF

Temperature:

00AF H(hexadecimal)=175=>Temperature=17.5 °C

4.3.3 Catch equipment position 0x01Temperature ,

Dissolved oxygen concentration

Query frame

Addre ss code	Funct ion code	Start address	Data length	Check code low bit	Check code high bit
0x01	0x03	0x00,0x01	0x00,0x02	0x95	0xCB

Reply frame

Addr	Funct	Efficie	Tompor	Dissolve	Check	Check
ess	ion	nt byto	oturo	d oxygen	code low	code
code	code	ni byte	ature		bit	high bit

0x01	0x03	0x04	0x01	0x00	0xDB	0xBF
			0x1b	0x28		

Temperature:

011B H(hexadecimal)=283=>Temperature=28.3 °C

Dissolved oxygen:

0028 H(hexadecimal)=40=>Dissolved oxygen=0.40mg/L

Charpter V Appendix

5.1 Warranty and after-sales

The warranty terms are in accordance with the after-sale terms of the sensors of Weihai Jingxun Changtong Electronic Technology Co., Ltd.. The warranty is one year for the parts of the main circuit of the sensors, six months for the gas sensitive probes and three months for the accessories (housings/plugs/cables, etc.).

5.2 Dissolved oxygen related national standard parameter

The attached data are from HJ506 Foshan 2009 national environmental protection standard

	Under the	Salt in the		Under the	Salt in the
Te	standard gas	water increase	Te	standard gas	water increase
m	pressure(101	every 1g/Kg	m	pressure(101	every 1g/Kg
pe	.325kPa)	Dissolved	pe	.325kPa)	Dissolved
ra	Oxygen	oxygen	ra	Oxygen	oxygen
tu	solubility	correction data	tu	solubility	correction data
re	(mg/L)	[(mg/L)/(g/Kg)]	re	(mg/L)	[(mg/L)/(g/Kg)]

一站北初软网供应于百

/			/		
°C			°C		
0	14.62	0.0875	21	8.91	0.0464
1	14.22	0.0843	22	8.74	0.0453
2	13.83	0.0818	23	8.58	0.0443
3	13.46	0.0789	24	8.42	0.0432
4	13.11	0.0760	25	8.26	0.0421
5	12.77	0.0739	26	8.11	0.0407
6	12.45	0.0714	27	7.97	0.0400
7	12.14	0.0693	28	7.83	0.0389
8	11.84	0.0671	29	7.69	0.0382
9	11.56	0.0650	30	7.56	0.0371
10	11.29	0.0632	31	7.43	0.0364
11	11.03	0.0614	32	7.30	0.0354
12	10.78	0.0593	33	7.18	0.0348
13	10.54	0.0582	34	7.07	0.0338
14	10.31	0.0561	35	6.95	0.0332
15	10.08	0.0545	36	6.84	0.0322
16	9.87	0.0532	37	6.73	0.0316
17	9.66	0.0514	38	6.63	0.0306
18	9.47	0.0500	39	6.53	0.0300
19	9.28	0.0489	40	6.43	0.0291
20	9.09	0.0475			

Oxygen solubility and salt data functional relation

Electrical conductiv ity/ (mS/cm)	Salt of water/ (g/Kg)	Electrical conductiv ity/ (mS/cm)	Salt of water/ (g/Kg)	Electrical conductiv ity/ (mS/cm)	Salt of water/ (g/Kg)
5	3	20	13	35	25
6	4	21	14	36	25
7	4	22	15	37	26
8	5	23	15	38	27
9	6	24	16	39	28
10	6	25	17	40	29

11	7	26	18	42	30
12	8	27	18	44	32
13	8	28	19	46	33
14	9	29	20	48	35
15	10	30	21	50	37
16	10	31	22	52	38
17	11	32	22	54	40
18	12	33	23		
19	13	34	24		

List 3 Saturated Water Vapor pressure and temperature functional relation

Altitude h / m	Average gas pressure p/ hPa	Altitude h / m	Average gas pressure p/ hPa	Altitude h / m	Average gas pressure p/ hPa
0	1013	1900	799	3800	630
100	1001	2000	789	3900	622
200	988	2100	779	4000	614
300	976	2200	769	4100	607
400	964	2300	760	4200	599
500	952	2400	750	4300	592
600	940	2500	741	4400	584
700	928	2600	732	4500	577
800	917	2700	723	4600	570

Temp eratur e/ ℃	Saturated Water Vapor pressure/ hPa	Tem pera ture / °C	Saturated Water Vapor pressure/ hPa	Tem pera ture / °C	Saturated Water Vapor pressure/ hPa
0	6.1	15	17.1	30	50.2
1	6.6	16	18.1	31	53.2
2	7.1	17	19.3	32	56.2
3	7.6	18	20.7	33	59.4
4	8.1	19	22.0	34	62.8
5	8.7	20	28.1	35	66.2
6	9.3	21	29.9	36	69.8
7	10.0	22	31.7	37	73.4
8	10.7	23	33.6	38	77.2
9	11.5	24	35.6	39	81.0
10	12.3	25	37.7	40	85.0
11	13.1	26	40.0		
12	14.0	27	42.4		
13	14.9	28	44.9		
14	16.0	29	47.6		